PublishedonWeb10/12/2010,Published

序列号 5
onWeb10/12/2010 SynthesisofCore-ShellStructuredDual-MesoporousSilicaSphereswithTunablePoreSizeandControllableShellThickness DechaoNiu,†ZhiMa,‡YongshengLi,*,†andJianlinShi*,†,§KeyLaboratoryforUltrafineMaterialsofMinistryofEducation,SchoolofMaterialsScienceandEngineering,East ChinaUniVersityofScienceandTechnology,Shanghai200237,China,ShanghaiInstituteofOrganicChemistry,ChineseAcademyofSciences,Shanghai200032,China,andStateKeyLaboratoryofHighPerformanceCeramicsand SuperfineMicrostructure,ShanghaiInstituteofCeramics,ChineseAcademyofSciences,Shanghai200050,China ReceivedAugust6,2010;E-mail:ysli@;jlshi@ Abstract:Core-shellstructureddual-mesoporoussilicaspheres(DMSS)thatpossesssmallerpores(2.0nm)intheshellandlargertunablepores(12.8-18.5nm)inthecorehavebeenessfullysynthesizedbyutilizinganamphiphilicblockcopolymer(polystyrene-b-poly(acrylicacid),PS-b-PAA)andcetyltrimethylammoniumbromide(CTAB)ascotemplates.ThethicknessoftheshellsandthelargerporesizeinthecorecouldbeeasilytunedbychangingtheamountsofTEOSandthehydrophobicblock(PS)lengthduringsynthesis,respectively.Byencapsulatinghydrophobicitenanoparticlesintothecores,icdual-mesoporoussilicasphereswereobtained.DrugstorageandreleasetestingresultsshowedthatthediffusingrateofthestoreddrugcouldbeefficientlycontrolledbychangingtheshellthicknessofDMSS. Hierarchicallyporousmaterialswithmultimodalporesystemshaveattractedincreasingattentionbecauseoftheirunique,adjustable,andwell-definedporestructureandgreatpotentialforapplicationsincatalysis,sorption,separation,andbiomedicalfields.1Uptonow,varioustemplatingapproacheshavebeenadoptedtosynthesizehierarchicallyporousmaterialsbyusingemulsions,colloids,andsurfactantsastemplates.2-4Especially,hierarchicallyporousmaterialswithbimodalmesoporositycanbesynthesizedbya“dualtemplating”approachorchemicalandhydrothermalposttreatmentsofmesoporoussilicamaterials.5However,inallthesecases,structuralcontrolwasdifficult,andmostofthesebimodalmesoporousmaterialslackawell-definedporestructureonatleastonelengthscaleintermsofporeshapeorsize.Inaddition,themacroporesizeswereusuallylarge,atleastat200-300nm,thoughsmallermacropores(<100nm)wouldbemoredesirable.6Recently,anovelkindofhierarchicallybimodalmesoporematerialswithtunableporesizeandstructurehasbeensynthesizedessfullybyusingvariousblockcopolymersasalargeporetemplateandasmallersurfactantasasmallporetemplate;7however,theobtainedparticlessufferedfromtheirregularmorphologyandbroadenedparticlesizedistribution.Consequently,developinganovelapproachonthesynthesisofdual-mesoporousmaterialswithwell-definedparticlemorphologyandsizeinthenanoscale(∼200nm)isstillagreatchallenge. Herein,wereportaverysimplemethodonthesynthesisofcore-shellstructuredandmonodisperseddual-mesoporoussilicaspheres(designatedasDMSS)withlargerporesinthecoreand †SchoolofMaterialsScienceandEngineering,EastChinaUniversityofScienceandTechnology. ‡ShanghaiInstituteofOrganicChemistry,ChineseAcademyofSciences.§ShanghaiInstituteofCeramics,ChineseAcademyofSciences. 151449J.AM.CHEM.SOC.2010,132,15144–15147 Figure1.TEMimages(a,b)aswellasN2adsorption-desorptionisothermsandBJHporediameterdistributioncurveatadsorptionbranch(inset)(c)ofDMSS-PS100. smallerporesintheshellusingamphiphilicblockcopolymerpolystyrene-b-poly(acrylicacid)(PS-b-PAA)andcetyltrimethylammoniumbromide(CTAB)asdualtemplates.Differentfrompreviouslyreportedblockcopolymer-templatingmethods,8anionicblockcopolymerPS-b-PAAisusedinthepresentstudyasatemplatetoformthelargermesopores.Moreimportantly,thesizeofthelargerporesandthethicknessoftheshellcanbeeasilytunedbychangingthelengthofPSblocksofPS-b-PAAandtheposition,respectively(TableS1).Itisimportanttonotethatdual-mesoporoussilicaspherespreparedbythismethodhaveuniformparticlesizesandawell-definedcore-shellstructure.Also,functionaldual-mesoporoussilicasphereswereessfullypreparedbyencapsulatinghydrophobicnanoparticles(suchasicFe3O4particles)inthelargepores.Drugstorageandreleasetestingresultsshowedthatupto500mgofibuprofencouldbestoredin1gofDMSS,andthediffusionrateofdrugmoleculescanbeeffectivelytunedbyvaryingthethicknessoftheshell. Figure1apresentstypicalTEMimagesofDMSSpreparedwithblockcopolymerPS100-b-PAA16asonetemplate(denotedasDMSSPS100).Well-definedcore-shellstructurednanospheresof∼250nmindiameterareclearlypresented.Itisinterestingtonotethatthecoreisneithersolidnorhollowbutposedoforderedmesoporeswithaporediameterofaround14nm.AnHRTEMimageofDMSS-PS100,asshowninFigure1b,furtherconfirmsthecore-shellstructureddual-mesoporousstructurewithlargerporesinthecoreandsmallerpores(∼2.0nm)intheshell.Inordertoconfirmthemesostructuralordering,smallangleX-rayscattering(SAXS)analysiswasadopted(FigureS1).AsshowninFigureS1,theSAXSpatternofDMSS-PS100showswell-resolvedscatteringpeaksintheqrange0.03-0.13A-1,indicatinganorderedhexagonalmesostructureinthecores.Inaddition,theXRDpatternofDMSS-PS100showninFigureS2alsoindicatestheorderedarrangementofthelargermesopores.However,thebroadenedscatteringpeakintheqrange0.15-0.20A-1inFigureS1andtheequallybroadeneddiffractionpeakinthe2θrange2°-3°showthedisorderedarrangementofthesmallermesopores,whichisalsoinordancewiththeaboveTEMobservations(Figure1b).In 10.1021/ja10706532010AmericanChemicalSociety COMMUNICATIONS Figure2.TEMimagesofDMSSpreparedbyusingblockcopolymersofdifferentlengthsofPSblockastemplates:(a,b)PS78-b-PAA16,(c,d)PS154b-PAA16. ordertounderstandthedual-mesoporousstructureofDMSSmoreclearly,anHRTEMimage(FigureS3)ofanultrathinmicrotomesectionofDMSS-PS100wasexamined.Itshouldalsobenotedthatsmallermesoporesarepresentnotonlyintheshellsbutalsointhelargeporeframeworkinthecores,whilelargermesoporescanonlybefoundinthecores. Inordertofurtherdemonstratethedual-mesoporousstructureofDMSS-PS100,N2sorptionanalysiswasperformed(Figure1c).AsshowninFigure1c,theadsorption-desorptionisothermsshowtwomajorcapillarycondensationstepsintherelativepressureranges0.1-0.3and0.80-0.95,implyingthattwosetsofmesoporesrespectivelyat∼2.0nmand∼14nmindiameterhavebeenobtainedascanbeidentifiedfromthecorrespondingdistributioncurveofDMSS-PS100,whichisobtainedbytheBarrett-JoynerHalenda(BJH)method.Inaddition,thespecificsurfaceareaandtotalvolumeofDMSS-PS100iscalculatedtobe697m2·g-1and0.95cm3·g-1,respectively.Noticeably,itisknownthattheBJHmethodisquitegoodforlargeporesbutmayunderestimatethesizeofsmallpores.AstheCTAB-templatedmesoporesareusuallysmallintherange3-3.5nm,toobtainamoreurateporesize,anovelnonlocaldensityfunctionaltheory(NLDFT)methodwasusedforthecalculationofporesizeanddistributionfromadsorptionisotherms.9AsshowninFigureS4,thesmallerporesizeofDMSSPS100bytheNLDFTmethodisaround2.94nm.Therefore,thesmallporesinourDMSSinthepresentworkcanbeunderestimatedbyabout1nmbytheBJHmethod. UndersimilarconditionstothoseforDMSS-PS100,DMSSwithvariedlargerporesizes,i.e.DMSS-PS78,DMSS-PS154,andDMSSPS260,wereobtainedbychangingthelengthofthePSblock.TEMimagestogetherwiththeN2sorptionanalysisresultsdemonstratethecore-shelldual-mesoporousstructureandsphericalmorphologyofDMSS-PS78andDMSS-PS154(Figures2andS5).OnincreasingthenumberofPSblockunitsinPS-b-PAAfrom78to154,thelargerporediameterinthecoreswasenlargedfrom12.8to18.5nm,respectively,whilethesmallermesoporeskeepconstantatabout2.0nm.ThismeansthatthenumberofPSblocksdeterminesthelargerporesizeofDMSS,toalargeextent.However,mesoporoushollowsilicasphereswereobtainedwiththenumberofPSblockunitsincreasingto260(FiguresS5andS6).Suchachangeofparticlestructurecanbemostprobablyattributedtothemicellemorphologytransformationfromrod-liketovesicleorotherpoundmicelles.AsamphiphilicblockcopolymerPS-bPAAmayformmicellesofvariedmorphologies(e.g.,spherical,rod-like,vesicle,andpoundmicelles),10itisanticipatedthatvariousparticlemorphologiesofdifferenthierarchicalporestructurescouldbepreparedwiththepresentmethodology.In Figure3.TEMimagesofDMSSwithdifferentshellthicknesses:(a,d)5nm,(b,e)25nm,and(c,f)60nm.Scheme1.SchematicIllustrationfortheFormationofDual-MesoporousSilicaSpheresa a(a)THFsolutionofPS-b-PAA;(b)CTAB-coatedPS-b-PAAaggregatesformedbytheelectrostaticinteractionbetweenCTA+andPAA-;(c)CorepartformedfromtheassemblybetweenCTAB-coatedPS-b-PAAaggregatesandTEOS;(d)Mesoporousshellformationviatheself-assemblybetweentheremainingCTABandtheadditionalTEOS;(e)Finalcore-shellstructureddual-maeoporoussilicaspheresaftercalcination. addition,theshellthicknessofDMSScouldbewelladjustedbychangingtheamountofTEOSduringsynthesis.AsshowninFigures3andS7,theshellthicknessofDMSS-PS100couldbevariedintherange5to60nm,withtheparticlesizevaryingfrom200to400nm,correspondingly. Basedontheaboveobservations,apossiblemechanismwasproposedtoexplaintheformationofdual-mesoporoussilicaspheres(Scheme1).AsthemorphologyofPS-b-PAAmicellescouldbechangedfromspherestorod-likeaggregatesbytheadditionofanicionsorsmallmoleculesurfactants,11inourexperiments,rod-likeaggregateswereassumedtoforminthepresenceofasmallmoleculesurfactant(CTAB)andammonia(NH4+)atthebeginningstage,whichwasconfirmedbytheTEMobservationofaprecursorsolutionbeforeaddingethanolandTEOS(FigureS8).Atthesametime,thehydrophilicPAAblocksofrod-likeaggregatescouldcouplewiththeCTABmicellesviaCoulombforceandelectrostaticinteractionbetweenCTA+andPAA-toformCTAB-coatedrodlikeaggregates,positemicelles,insolution.AftertheadditionofTEOSandethanol,theanicself-assembledhybridmicelles,whichposedofsilicateoligomersandCTABcoatedPS-b-PAArod-likeaggregates,werefirstformed.Then,these
J.AM.CHEM.SOC.9VOL.132,NO.43,201015145 COMMUNICATIONS rod-likepositemicellespacktogetherinanorderedfashiontoformthecorepartdual-mesoporousstructure,whichissimilartothemodelproposedbyCaiandco-workers.12Finally,theelectrostaticinteractionbetweenpositivelychargedCTA+andnegativelychargedsilicaspeciesandthecondensationoftherodlikesilicatemicellesfacilitatethedepositionofthemicelles,resultingintheformationofmesoporoussilicawithasphericalmorphology.AsacertainlimitedamountofCTABcancoatthePS-b-PAAmicellestopositemicelles,theremainingCTABmoleculeswillbeexpelledoutofthecoreportionofthestructure,andoncethecoreparteslargeenough,theimmediateouterregionofthecore(or,theinterfacebetweenthecoreandtheliquidphase)willesufficientlyrichinCTAB,leadingtothecooperativeself-assemblybetweentheseCTABmoleculesandadditionalTEOSandconsequentlytheformationofanoutershellofsmallerporessurroundingthecores. Fromthisproposedmechanism,itisclearthatCTABplaysanimportantroleintheformationofthestructure.WithoutCTAB,CTAB-coatedPS-b-PAAaggregatescannotformandthecorrespondingself-assemblybetweentheCTAB-coatedPS-b-PAAaggregatesandTEOScouldnottakeplace,sothatmesoporousmaterialswillnotbeobtained.Inaddition,ethanolsolventplaysanessentialroleintheformationofstableCTAB-coatedrod-likeaggregates.AsshowninFigureS9,withoutorwiththeadditionofasmallamountofethanol(e.g.,40mL),dual-mesoporoussilicaspherescannotbeobtained;onlyconventionalmesoporoussilicasphereswithasingleporesystemat2.3nm,orsometimeswithfewlargeporechannels,wereformed.Incontrast,whenamuchlargeramountofethanol(120mL)wasemployed,onlylarge-poremesoporoussilicasphereswithaporesizeof15nmwereobserved.Thereasonforthedisappearanceofsmallerporesisprobablyduetothelargelyincreasedcriticalmicelleconcentration(CMC)ofCTABwiththeincreasedamountofethanol,13whichishigherthanthatofCTABmicelleconcentration,resultinginthedissociationofCTABmicelles.ThistransformationwasalsoconfirmedbyN2sorptionanalysis(FigureS10). Inaddition,thismethodalsoprovidesopportunitiesfordevelopingdual-mesoporoussilicasphereswithspecificfunctions.Here,wedemonstratedtheessfulincorporationofitenanoparticlesintothelargerporesofDMSSforicfunctionalization.FromtheTEMimagesofite-loadeddual-mesoporoussilicaspheres(denotedasFe3O4@DMSS,FigureS11),itcanbeseenthatthemonodispersityanddual-mesoporousstructureofparticleswerenotaffectedwiththeencapsulationofitenanoparticles.Duetothesmallsizeofitenanoparticles(∼4nm),itishardtodistinguishtheFe3O4nanoparticlesfromthematrixintheTEMimage.However,theenergydispersivespectrum(EDS)andXRDpatternofFe3O4@DMSSconfirmtheexistenceofFe3O4nanoparticlesintheparticles(FiguresS12andS13).N2adsorptiondesorptionanalysis(FigureS14)showstwosetsofmesoporescenteredat2.1and11.2nm,respectively,andahighspecificsurfaceareaof1154m2·g-1andporevolumeof1.21cm3·g-1wereobtainedforFe3O4@DMSS.TheicpropertiesofFe3O4@DMSSat300Kwererecordedusingavibrating-sampleometer(VSM),aspresentedinFigureS11c,demonstratingtheiricfeaturewithasaturationizationvalueof2.5emu/g,whichisdesirablefortheirbiomedicalapplications,suchasinicseparation,icresonanceimaging(MRI),targeteddrugdelivery,andhyperthermiatreatmentofcancer.14TheicseparabilityofFe3O4@DMSSwasfurthervisuallytestedinwaterbyplacinganeartheglassbottle.Theparticleswereattractedtowardthewithinseveralminutes,asshowninFigureS11d,demonstratingdirectlythatthe 15146J.AM.CHEM.SOC.9VOL.132,NO.43,2010 core-shellnanosphereshavebeenendowedwithicproperties.Followingthesameprocedure,variouskindsofhydrophobicnanoparticlescanbeencapsulatedinthecoreofthedualmesoporoussilicaspheres,resultinginmultifunctionalsilicasphereswiththedual-mesoporousstructure. Toexploreitscapabilityasadrugcarrier,ibuprofen,atypicalanti-inflammatorydrug,wasintroducedintotheporesofDMSSofvariedshellthicknessesof5,25,and60nmanddenotedasDMSS100-ST5,DMSS100-ST25,andDMSS100-ST60,respectively.Theuptakeamountsofibuprofenareca.26.3,34.6,and29.5wt%,asassessedbyTGanalysis.ThereleasebehaviorofibuprofeninPBSsolution(pH)7.4)wasmeasuredovera24hperiod(FigureS15).ItisclearthatthereleaseratesofdrugmoleculescouldbecontrolledbychangingtheshellthicknessofDMSS.Inaddition,anapparentthree-stageibuprofenreleaseprofilefromsamplesDMSS100-ST25andDMSS100-ST60isclear:thefirststageinvolvestherapidreleaseofibuprofenwithinthefirst60min,owingtothereleaseofIBUadsorbedontheexternalsurface.Then,thereleaseamountofibuprofenincreasesagainfrom2to6handreachesaplateauat73%forsampleDMSS100-ST25,forexample.Itisreasonabletoattributethisreleasetothosetrappedinthesmallpore.Finally,theibuprofenconcentrationincreasesfrom6to24handeventuallyreachesanotherplateauat80%forDMSS100-ST25.Thereleaseinthelaststagecouldprobablybeattributedtotheadsorbeddruginthelargepores.Thethree-stepreleaseprofileofthedual-mesoporousstructureissimilarwiththatformesoporousandyolk-shellstructurereportedpreviously.15ThisindicatesthatDMSScanbeaneffectivecarrierfordrugdeliverandrelease. Insummary,anovelkindofcore-shellstructureddualmesoporoussilicasphereswithahierarchicalporestructure,whichposedofsmallermesoporesintheshellsandorderedlargermesoporesinthecores,havebeenfabricatedbyasimpledualtemplatingmethod.ThelargerporesizeofDMSScanbeeasilytunedbychangingthePSblocklengthofPS-b-PAA.Inaddition,theshellthicknessofdual-mesoporoussilicaspherescanbewellcontrolledfrom5to60nmbyvaryingtheconcentrationofTEOS.Athree-stepreleaseprofileofdrugswasobservedwiththeseparticulardual-mesoporousstructures.Also,icitenanoparticlescanbeencapsulatedindual-mesoporoussilicaspheres,resultinginpositespheres,whichmayfindpotentialapplicationsincatalysis,sorption,separation,andbiomedicalfields. Acknowledgment.ThisworkwasfinanciallysupportedbytheNationalHi-TechProjectofChina(GrantNo.2007AA03Z317);theNationalNaturalScienceFoundationofChina(GrantNo.20633090and21001043),ScientificInnovationProjectofShanghaiMunicipalEducationCommission(GrantNo.11ZZ53),andShanghaiPujiangProgram(GrantNo.09PJ1403000). SupportingInformationAvailable:Experimentaldetailsforthesynthesisandadditionalfigures.Thismaterialisavailablefreeofchargeviatheat. References
(1)(a)Dong,
A.G.;Wang,
Y.J.;Tang,
Y.;Zhang,
Y.H.;Ren,
N.;Gao,
Z.AdV.Mater.2002,14,1506–1510.(b)Li,
Y.S.;Shi,
J.L.;Hua,
Z.L.;Chen,
H.R.;Ruan,
M.L.;Yan,
D.S.NanoLett.2003,3,609–612.(c)Chen,
H.;Shi,
J.;Li,
Y.;Yan,
J.;Hua,
Z.;Chen,
H.;Yan,
D.AdV.Mater.2003,15,1078–1081.(d)Brandhuber,
D.;Torma,
V.;Raab,
C.;Peterlik,
H.;Kulak,
A.;Husing,
N.Chem.Mater.2005,17,4262–4271.(e)Mori,
H.;Uota,
M.;Fujikawa,
D.;Yoshimura,
T.;Kuwahara,
T.;Sakai,
G.;Kijima,
T.MicroporousMesoporousMater.2006,91,172–180.(f)Kuang,
D.B.;Brezesinski,
T.;Smarsly,
B.J.Am.Chem.Soc.2004,126,10534–10535.
(2)(a)Sen,
T.;Tiddy,
G.J.T.;Casci,
J.L.;Anderson,
M.W.Chem.Commun.2003,2182–2183.(b)Wang,
J.G.;Xiao,
Q.;Zhou,
H.J.;Sun,
P.C.;Yuan,
Z.Y.;Li,
B.H.;Ding,
D.T.;Shi,
A.C.;Chen,
T.H.AdV.Mater.2006,18,3284–3288.(c)Feng,
Z.G.;Li,
Y.S.;Niu,
D.C.;Li,
L.;Zhao,
W.R.;Chen,
H.R.;Gao,
J.H.;Ruan,
M.L.;Shi,
J.L.Chem.Commun.2008,2629–2631.
(3)(a)Antonietti,
M.;Berton,
B.;Go¨ltner,
C.;Hentze,
H.AdV.Mater.1998,10,154–159.(b)Stein,
A.;Li,
F.;Denny,
N.R.Chem.Mater.2008,20,649–666.(c)Chen,
X.;Sun,
Z.Q.;Zheng,
L.L.;Chen,
Z.M.;Wang,
Y.F.;Fu,
N.;Zhang,
K.;Yan,
X.;Liu,
H.;Jiang,
L.;Yang,
B.AdV.Mater.2004,16,1632–1636.
(4)(a)Suzuki,
K.;Ikari,
K.;Imai,
H.J.Mater.Chem.2003,13,1812–1816.(b)Sun,
J.;Shan,
Z.;Maschmeyer,
T.;Coppens,
M.O.Langmuir2003,19,8395–8402.(c)Ikari,
K.;Suzuki,
K.;Imai,
H.Langmuir2004,20,11504–11508.(d)Groenewolt,
M.;Antonietti,
M.Langmuir2004,20,7811–7819.(e)Sen,
T.;Tiddy,
G.J.T.;Casci,
J.L.;Anderson,
M.W.Angew.Chem.,Int.Ed.2003,42,4649–4653.(f)Niu,
D.C.;Li,
Y.S.;Dong,
W.J.;Zhao,
W.R.;Li,
L.;Shi,
J.L.J.Mater.Sci.2009,44,6519–6524.
(5)(a)Wang,
X.;Dou,
T.;Xiao,
Y.Chem.Commun.1998,1035–1036.(b)Bagshaw,
S.A.Chem.Commun.1999,1785–1786.(c)Sun,
J.;Shan,
Z.;Maschmeyer,
T.;Moulijn,
J.A.;Coppens,
M.O.Chem.Commun.2001,2670–2671.(d)ElHaskouri,
J.;deZarate,
D.O.;Guillem,
C.;Latorre,
J.;Caldes,
M.;Beltran,
A.;Beltran,
D.;Descalzo,
A.B.;Rodriguez,
G.;Martinez-Manez,
R.;Marcos,
M.D.;Amoros,
P.Chem.Commun.2002,330–331.(e)Yuan,
Y.;Blin,
J.L.;Su,
B.L.Chem.Commun.2002,504–505.(f)Okabe,
A.;Niki,
M.;Fukushima,
T.;Aida,
T.J.Mater.Chem.2005,15,1329–1331.
(6)Yang,
P.;Deng,
T.;Zhao,
D.;Feng,
P.;Pine,
D.;Chmelka,
B.F.;Whitesides,
G.M.;Stucky,
G.D.Science1998,282,2244–2246.
(7)Sel,
O.;Kuang,
D.;Thommes,
M.;Smarsly,
B.Langmuir2006,22,2311–2322. COMMUNICATIONS
(8)Ryoo,
R.;Ko,
C.H.;Kruk,
M.;Antochshuk,
V.;Jaroniec,
M.J.Phys.Chem.B2000,104,11465–11471.
(9)(a)Ravikovitch,
P.I.;Wei,
D.;Chueh,
W.T.;Haller,
G.L.;Neimark,
A.V.J.Phys.Chem.B1997,101,3671–3679.(b)Kruk,
M.;Jaroniec,
M.Chem.Mater.2001,13,3169–3183. (10)Shen,
H.W.;Eisenberg,
A.Macromolecules2000,33,2561–2572.(11)(a)Yu,
Y.;Zhang,
L.;Eisenberg,
A.Macromolecules1998,31,1144– 1154.(b)Zhang,
L.;Yu,
K.;Eisenberg,
A.Science1996,272,1777–1779.(c)Zhang,
L.;Eisenberg,
A.Macromolecules1996,29,8805–8815.(d)Yu,
Y.;Eisenberg,
A.J.Am.Chem.Soc.1997,119,8383–8384.(12)Cai,
Q.;Luo,
Z.;Pang,
W.;Fan,
Y.;Chen,
X.;Cui,
F.Chem.Mater.2001,13,258–263.(13)(a)Tan,
B.;Rankin,
S.E.J.Phys.Chem.B2004,108,20122–20129.(b)Nazira,
N.;Ahangera,
M.S.;Akbar,
A.J.DispersionSci.Technol.2009,30,51–55.(14)(a)Jeong,
U.;Teng,
X.;Wang,
Y.;Yang,
H.;Xia,
Y.AdV.Mater.2007,19,33–60.(b)Gu,
H.;Xu,
K.;Xu,
C.;Xu,
B.Chem.Commun.2006,941–949.(c)Hu,
F.;Wei,
L.;Zhou,
Z.;Ran,
Y.;Li,
Z.;Gao,
M.AdV.Mater.2006,18,2553–2556.(d)Veiseh,
O.;Sun,
C.;Gunn,
J.;Kohler,
N.;Gabikian,
P.;Lee,
D.;Bhattarai,
N.;Ellenbogen,
R.;Sze,
R.;Hallahan,
A.;Olson,
J.;Zhang,
M.NanoLett.2005,5,1003–1008.(e)Nasongkla,
N.;Bey,
E.;Ren,
J.;Ai,
H.;Khemtong,
C.;Guthi,
J.S.;Chin,
S.;Sherry,
A.D.;Boothman,
D.A.;Gao,
J.NanoLett.2006,6,2427–2430.(f)Niu,
D.C.;Li,
Y.S.;Ma,
Z.;Diao,
H.;Gu,
J.L.;Zhao,
W.R.;Chen,
H.R.;Ruan,
M.L.;Zhang,
Y.L.;Shi,
J.L.AdV.Funct.Mater.2010,20,773–780.(15)Liu,
J.;Qiao,
S.Z.;Hartono,
S.B.;Lu,
G.Q.Angew.Chem.,Int.Ed.2010,49,4981–4985. JA1070653
J.AM.CHEM.SOC.9VOL.132,NO.43,201015147

标签: #mm #多少钱 #密码 #安全员 #都是 #本田 #体温 #多少钱